Información segura para el desarrolo de Tus Tareas.

Licencia de Creative Commons
Reconocimiento No Comercial.

    ARITMETICA-PARTE 2/5

    Comparte

    fabi331xd

    Mensajes : 16
    PostPuntos : 120
    Fecha de inscripción : 12/05/2012
    Edad : 24
    Localización : yumbo

    ARITMETICA-PARTE 2/5

    Mensaje  fabi331xd el Lun Mayo 14, 2012 9:38 pm

    ARITMÉTICA EN LA ANTIGUA GRECIA
    La aritmética en la Grecia Antigua era considerada como el estudio de las propiedades de los números, y no incluía cálculos prácticos, los métodos operatorios eran considerados una ciencia aparte. Esta particularidad fue heredada a los europeos durante la Edad Media, y no fue hasta el Renacimiento que la teoría de números y los métodos de cálculo comenzaron a considerarse «aritméticos».
    La matemática griega hace una aguda diferencia entre el concepto de número y el de magnitud o conmensurabilidad. Para los matemáticos griegos, número significaba lo que hoy se conoce por número natural, además de diferenciar entre «número» y «magnitud geométrica». Los libros 7–9 de Los elementos de Euclides tratan de aritmética exclusivamente en este sentido.
    Nicómaco de Gerasa (ca. 60 - 120 d. C.), en su Introducción a la Aritmética, resume la filosofía de Pitágoras y de Platón enfocada a los números y sus relaciones fundamentales. Nicómaco hace por primera vez la diferencia explícita entre Música, Astronomía, Geometría y Aritmética, y le da a esta última un sentido más «moderno», es decir, referido a los números enteros y sus propiedades fundamentales.6 El quadrivium (lat. "cuatro caminos"), agrupaba estas cuatro disciplinas científicas relacionadas con las matemáticas provenientes de la escuela pitagórica.
    Diofanto de Alejandría (siglo III d.C), es el autor de Arithmetica, una serie de libros sobre ecuaciones algebraicas en donde por primera vez se reconoce a las fracciones como números, y se utilizan símbolos y variables como parte de la notación matemática; redescubierto por Pierre de Fermat en el siglo XVII, las hoy llamadas ecuaciones diofánticas condujeron a un gran avance en la teoría de números.

    EDAD MEDIA
    El mayor progreso matemático de los griegos se dio entre los años 300 a.C y el 200 d.C. Después de esto los avances continuaron en regiones islámicas. Las matemáticas florecieron en particular en Irán, Siria e India. Si bien los descubrimientos no fueron tan sustanciales como los llevados a cabo por los matemáticos griegos, sí contribuyeron en gran medida a preservar sus obras originales. A partir del siglo XI, Adelardo de Bath y más adelante Fibonacci, introducen nuevamente en Europa esta matemática islámica y sus traducciones del griego.7
    De las siete artes liberales en que se organizaban los estudios formales en la Antigüedad y la Edad Media, la aritmética era parte de las enseñanzas escolásticas y universitarias.8 En 1202, Fibonacci, en su tratado Liber Abaci, introduce el sistema de numeración decimal con números arábigos. Las operaciones aritméticas, realizadas hasta entonces, resultaban muy complicadas con numerales romanos, aún las más básicas; la importancia práctica en contabilidad hizo que las nuevas técnicas aritméticas se popularizaran enseguida en Europa. Fibonacci llegó a escribir que «comparado con este nuevo método, todos los demás habían sido erróneos».

    CIVILIZACIONES PRECOLOMBINAS
    Al igual que otras civilizaciones mesoamericanas, los mayas utilizaban un sistema de numeración de base vigesimal (base aritmética 20) para medir el tiempo y participar del comercio a larga distancia. Los mayas preclásicos desarrollaron independientemente el concepto de cero alrededor del año 36 a. C.9 Aunque poseían sistema de numeración, la ciencia maya y azteca estaba más enfocada en predecir el paso del tiempo, elaborar calendarios y pronosticar eventos astronómicos. Las culturas andinas, que no poseían sistema de escritura, sí parecen haber desarrollado más el cálculo aritmético. Algunas inscripciones fijan con gran precisión el año solar real en 365 días. Fueron las primeras civilizaciones en inventar el cero, aunque con algunas peculiaridades que le privaron de posibilidad operatoria.10
    Los incas se destacaron principalmente por su capacidad de cálculo para fines económicos y comerciales. Los quipus y yupanas fueron señal de la importancia que tuvo la administración incaica. Esto dotó a los incas de una aritmética sencilla pero efectiva para fines contables; basada en el sistema decimal, conocieron el cero y dominaron la suma, la resta, la multiplicación y la división.


      Fecha y hora actual: Lun Dic 05, 2016 4:38 pm